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Abstract

This paper presents a two-level neural network scheme for finite element (FE) model updating in which
both the structural parameters and the damping ratios are updated. Considering the fact that in a lightly
damped system the damping has only negligible influence on the resonance and antiresonance frequencies
of the system, in the first-level updating the model is assumed to be free of damping and the structural
parameters are updated using the natural and antiresonance frequencies as the response data. With the
updated structural parameters from the above first-level updating, the second-level updating procedure
deals only with the damping ratios, using the integrals of frequency response function (FRF) as reference
responses. For the selection of a proper response configuration, a sensitivity analysis scheme is proposed,
taking into account the carry-over error during the first-level updating in addition to the anticipated error
in the measured FRF data. Through a numerical example it is shown that the approach is effective and
efficient. It is also shown that by means of a noise injection learning the neural network can acquire
considerable noise-resisting ability, resulting in about 50% reduction of the errors in the updated
parameters as compared to the anticipated errors from the sensitivity analysis.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Updating of the finite element (FE) model parameters is an essential step towards establishing a
reliable FE model for an existing structure. Successfully updated FE model enables the analysis of
the structural performance under a variety of user-defined loading conditions. The identification
of the structural parameters from an FE model updating procedure also allows for an effective
diagnosis and assessment of the structural condition.
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The FE model updating or structural parameter identification in essence is to achieve, by
updating the model parameters, a match between the predicted system response and the response
measured from the actual structure. Among all applicable candidates of structural experimental
data used by model updating, the modal or vibration data (and possibly its derivative information
as well) are widely adopted because of the fact that the modal information, i.e., the resonance
frequencies and mode shapes only depends on the structural inherent properties irrespective of the
excitation applied. The vibration data based FE model updating is also called dynamic FE model
updating. The basic premise of the vibration-based model updating scheme is that the FE
modelling errors will produce sensible influence on the stiffness, mass or energy dissipation
properties of a system, which, in turn, affect the measured dynamic response of that system.
The current common techniques for performing dynamic model updating stem primarily from

the iterative-based methods and they usually employ a gradient-descent technique to directly
update the structural parameters [1]. Iterative methods allow large amount of parameters to be
updated simultaneously, making these schemes very attractive, and a number of applications have
been reported [2–4]. Despite the successes, however, the iterative-based updating methods bear
inherent limitations due to the following facts: (a) the searching procedure may be snagged at a
particular local optimum instead of the global actual solution, (b) the process is vulnerable to the
measurement errors, and (c) the updating usually requires a pre-processing on the response data
(data reduction/expansion), which could introduce additional errors. In these respects, the recent
development in artificial intelligence algorithms—the artificial neural networks (ANN)—provides
a potentially powerful alternative to the traditional iterative-based methods because of the
particular working mechanism with which ANN operates, i.e., the learning phenomenon. The
appealing features of ANN concerning the FE model updating include: (a) it performs a function
approximation of any complexity via a learning process based on the given discrete training
patterns; and once trained, new updating can be carried out readily using the network (i.e.,
‘‘generalization’’ in ANN terminology); and (b) it has the potential to resist the influence of noises
that are contained in the input data (structural response). Furthermore, ANN in itself does not
require specific form or completeness of the response data. It is noteworthy that in fact any
pertinent system information can be incorporated in an ANN-based updating procedure since
such a scheme works only with the response data itself and does not require other auxiliaries such
as derivative information; hence, the definition of the objective function can be extremely flexible
such that the procedure can be made very robust and versatile.
In recent years, some researchers have applied ANN for structural damage detection related

applications [5–8]. Much experience has been accumulated through these exploratory investiga-
tions. However, there appears to be lacking a generic procedure to apply ANN in FE model
updating concerning general structural parameters, especially when damping is involved. In this
paper, the multi-layer feed-forward (MLP) neural network is employed to perform a general FE
model-updating task including the updating of the damping parameters. To reduce the
computational demand, and considering the fact that the influence of damping on the resonance
and antiresonance frequencies of a lightly damped system is negligible, the updating of the FE
model parameters is divided into two levels using two separate neural networks. The first-level
network is trained to update the structural parameters (stiffness in particular) using the natural
and antiresonance frequencies as the response data without considering the damping effect. With
the updated structural parameters from the above first-level updating, the second-level network
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then deals with updating the variable damping ratios. For the updating of the damping ratios, the
integrals of frequency response function (FRF) are used as the reference responses because of their
inherent relationship with the damping factors. In order for the identification of a proper response
configuration, a sensitivity analysis scheme is proposed, taking into account the carry-over error
during the first-level updating in addition to the anticipated measurement error (‘‘noise’’) in the
response data. A numerical example is given to illustrate the implementation of the proposed
scheme and demonstrate the effectiveness of the procedure; and in particular, the noise resisting
ability of the neural network trained using the noise-injection strategy is highlighted.

2. Overview of artificial neural networks (ANN)

Artificial neural networks, or simply neural networks, are essentially computational structures
that mimic the operation of biological neurons of mammalian brains. Such structures encapsulate
a variety of simple processing units (artificial neurons), interconnected with each other. Each
neuron receives a number of inputs and produces one output as shown in Fig. 1(a); however, there
exist a few different types of neurons associated with different schemes in manipulating the input
information, h; to result in the output, O:
Among many different forms of network topologies (interconnection style of neurons), the

MLP network (see Fig. 1(b)), which possesses layered structure and allows only connections from
neurons in one layer to those in layers of its forward direction, has been applied widely due to its
effectiveness and simplicity. This special topology form is mainly designed for approximating an
unknown function relation, and the ability for the network to do so is realized through a learning
process on the provided data patterns (training data), whereby the interconnection weights, w; are
continuously adjusted until a predefined error criterion is reached.
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Fig. 1. Schematic illustration of the neuron (processing unit) and a typical network structure. (a) A simple neuron
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; f: Log-sigmoid transfer function. (b) An l-layered MLP network.
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In the present study, the widely used Levenburg–Marquardt (LM) back-propagation training
algorithm is adopted to carry out the neural network learning towards minimizing a predefined
error function, which is generally formulated as mean square error (MSE) between the network
outputs and the actual values corresponding to the given set of input vectors. As a result, an
optimal set of weights are obtained.
In general, the design of a MLP network needs to decide on the following: the number of

hidden layers; the associated number of neurons in each hidden layer; and the interconnection
patterns among the neurons. The identification of a true optimal combination can be very time
consuming and some novel methods have been proposed in attempt to tackle this problem [9,10].
At the present stage, a trial procedure is still commonly practiced in the design of ANN topology
for engineering applications. In fact, it has also been shown that a network with only one hidden
layer suffices to approximate a large spectrum of complex functions [11,12]; therefore, the
required effort in identifying a desirable network design can be considerably reduced by using just
one or two hidden layers. Based on these considerations and following some trial exercises, in the
present study the neural network structure is unified to contain two hidden layers and both hidden
layers are to have an equal number of hidden neurons, leaving only the number of hidden neurons
to be determined in the network topology design, for which a trial process is effective.
For the improvement of the network performance, a data scaling process is usually required.

This is because the compiled raw training data, such as the modal frequencies of a structure used
in this study, can vary significantly in their original values. When such data are directly used in the
training procedure, the network could exhibit ill-conditioning and possibly does not learn at all.
Besides, the application of so trained network may also bear the risk that some input components
are in fact ignored; consequently, the network would no longer represent the underlying system.
This problem can be avoided by a proper scaling on the raw input data patterns, such that the
input data are normalized to fall within a prescribed bound, for example in the range of [�1,1].
For this particular value range, the transformation can be of a linear form

xN
m ¼ 2

xm �minðxmÞ
maxðxmÞ �minðxmÞ

� 1; ð1Þ

where xm is a row of the input data matrix, in which each column represents one given data
pattern for training, and xN

m is the normalized quantity.
It is well recognized that the applicability of traditional updating methods is often restricted due

to the measurement errors that exist in practically all measured response data. In this regard, the
neural network technique is particularly appealing because of its potential noise-resisting
capability. This capability can be acquired through the so-called noise-injection learning. Usually
the possible margin of errors in the measured structural response information is assessable from
relevant past experiences. In the implementation of the noise-injection learning algorithm for the
neural network training, a similar level of random noise simulating the actual measurement errors
or noises is injected into the network input data (responses) while their correct output
counterparts are retained. Such noise-injection operation is straightforward and it can be
expressed as

*Rj ¼ Rjð1þ vjÞ; ð2Þ
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where Rj and *Rj represent the noise free (calculated) and the noise-injected response components,
respectively, and vj is a noise item simulating anticipated noise or errors in the measured response
data. At this juncture, it also becomes obvious that the success of the noise-injection learning in
real applications is subject to the adequacy of the noise model chosen in representing the actual
noises for the particular problem under consideration.

3. Basic considerations for the two-level neural network updating scheme

3.1. Antiresonance frequencies

As damping effect is ignored at the first-level updating on structural parameters in the two-level
network scheme, it is deemed appropriate not to consider mode shape data as responses because
the mode shapes are more sensitive to damping. This, however, will result in a drastic reduction in
the size of the available measured data set. To compensate for this, the antiresonance frequencies
are considered together with the natural frequencies to enlarge the response data set.
The antiresonance frequencies are defined as the frequencies at which the magnitude of the

frequency response at a measured degrees of freedom (d.o.f.) approaches zero [13], as depicted in
Fig. 2(a). Lallement and Cogan [14] introduced the concept of using antiresonance frequencies to
update FE models. The reason is that these antiresonance frequencies can be easily and accurately
measured in a similar way as for the natural frequencies. Furthermore, a system can have much
greater number of antiresonance frequencies than natural frequencies because every different
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Fig. 2. Definition of antiresonance frequencies (a) and integration intervals of FRF for damping ratio updating (b).
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FRF between an actuator and a sensor contains another set of antiresonance frequencies.
Lallerment and Cogan referred to this increased amount of data as an ‘‘enlargement of the
knowledge space’’ [14]. Mottershead [15] showed that the antiresonance sensitivities to structural
parameters can be expressed as a linear combination of natural frequency and mode shape
sensitivities, and furthermore that the dominating contributors to the antiresonance sensitivities
are the sensitivities of the nearest frequencies and corresponding mode shapes. Therefore,
Mottershead concluded that the antiresonance frequencies can be a preferred alternative to mode
shape data.
To calculate antiresonance frequencies of a dynamic system, He and Li [16] developed an

accurate and efficient method for undamped systems. Consider the eigenequation of a dynamic
system given by

ðK� o2MÞffg ¼ 0; ð3Þ

where matrices K; M; vector {f} and scalar o denote structural stiffness matrix, mass matrix,
mode shape vector and eigenfrequncy, respectively. Generally, the FRF matrix HðoÞ is defined as

HðoÞ ¼ ðK� o2MÞ�1: ð4Þ

The FRF for a sensor at d.o.f. p and an actuator at d.o.f. q should be the pqth element of HðoÞ:

HpqðoÞ ¼ ðK� o2MÞ�1pq ¼
adjðK� o2MÞpq

DetðK� o2MÞ
¼ ð�1Þpþq DetðKpq � o2MpqÞ

DetðK� o2MÞ
; ð5Þ

where Kpq andMpq indicate that row p and column q are deleted from the matrices. Therefore, the
antiresonance frequencies oa for the FRF between p and q are the positive roots of the following
equation:

DetðKpq � o2
aMpqÞ ¼ 0 ð6Þ

for systems involving the damping effect, Eq. (3) should be modified to incorporate damping in
order to calculate its antiresonance natural frequencies, which in this case are complex quantities.
It is worth noting that matrices Kpq and Mpq in Eq. (6) remain symmetric in case of collocated
sensor and actuator, i.e., p ¼ q; and therefore the corresponding FRFs will always contain real
antiresonance frequencies; otherwise, antiresonance frequencies of complex conjugates can be
expected. In this research, only those antiresonance frequencies obtained from collocated FRFs
are considered.

3.2. Damping model

The identification of damping in structural systems is extremely important if a model is to
predict reliably the transient responses, transmissibility, decay times or other characteristics in
design and analysis that are dominated by energy dissipation. However, unlike the overall stiffness
and mass matrices, the damping matrix C cannot be constructed from the element damping
matrix [17]. In the present study, it is not intended to carry out an in-depth investigation on the
most appropriate damping model for a given system; but rather, the focus is placed on the
identification of the damping values under a preselected damping model. For this purpose, the
commonly used Rayleigh damping model in lightly damped systems is employed, which can be
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expressed as

C ¼ M
Xr�1
k¼0

ak½M�1K	k; ð7Þ

where r is the number of damping ratios used to approximate the structural damping effect and
coefficients ak (k ¼ 0; 1;y; r � 1) are obtained from the r number of simultaneous equations

zi ¼
1

2

a0

oi

þ a1oi þ?þ ar�1o2r�3
i

� �
¼
1

2

Xr

k¼1

ak�1o2k�3
i ði ¼ 1; 2y; rÞ; ð8Þ

where zi denotes the ith modal damping ratio. Expression (7) for the damping matrix, allowing for
the orthogonality of mode shapes, provides a very convenient way for incorporation into the
calculation of structural dynamic responses.
The damping model represented by Eq. (7) implies that the total damping in the structure is the

sum of individual damping in each mode. Thus, the ability to measure values for the damping
ratio zi; and hence the damping behavior of the complete structure system, is an important
consideration in practice. It is noted that with r ¼ 2; Eq. (7) reduces to the Rayleigh damping
which is frequently called the ‘‘proportional damping’’. However, the Rayleigh damping model
obviously damps the higher modes considerably more than the lower modes. Hence, more
damping ratios would be desired to better simulate the true damping behavior of a structural
system.
Although the existing modal analysis theory can identify damping parameters based on

structural FRF data, the results can be highly susceptible to the measurement errors. In the
present study, an ANN-based method is proposed for identifying the damping ratios under the
above-mentioned damping model. The reference responses are taken from the integrals of FRFs
over a specified small frequency range in the vicinity of the natural resonance frequencies, as
shown in Fig. 2(b). In this way, the identified damping ratios can be of better accuracy because the
noise components on the FRF curves are somehow ‘‘neutralized’’ through the integration process.
It is noted that integrals of FRF curves can also be used as conditioned frequency domain data for
structural parameter updating as proposed in a previous work [18,19]. In the present study, the
integrals of FRFs are employed in its capacity for updating structural damping ratios.

3.3. Sensitivity analysis for selection of response configuration and evaluation of network

performance

In the context of ANN-based FE model updating, the sensitivity analysis can be engaged for
two purposes. One is to assist in the determination of a desired response configuration (i.e., the
composition of the response vector). The proposed model updating herein uses the modal
frequencies and FRF integrals as the response data for the updating of the FE model parameters.
Since different antiresonance frequencies and FRF curves can be obtained by placing the actuator
and sensor at different locations (d.o.f.s) of the structure, it is possible to have different
combinations of the response components within a practical limit of the modal order. Based on
the sensitivity analysis, a response configuration that yields a smaller variation of the FE
parameters with a given level of perturbation to the response data is considered more desirable.
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Another purpose of the sensitivity analysis is to provide a margin of anticipated errors in the FE
parameters in case the response data contain a certain level of measurement errors. This estimate
can be compared with the actual neural network prediction errors to evaluate the noise-resisting
ability of the trained neural network.
As the proposed updating scheme involves two levels of neural networks and each performs a

separate task based on different types of response data, separate sensitivity analysis is carried out
for the two updating processes. Because the second network proceeds on the basis of the updated
structural parameters from the first network, the errors in the structural parameters will result in
errors in the computed FRFs to be used for the training of the second network. Such ‘‘carry-over’’
errors should be considered in conjunction with the errors that can be anticipated in the actual
measured FRFs for the sensitivity analysis concerning the damping ratios.

3.3.1. Sensitivity analysis concerning structural parameters (first-level network)

In this sensitivity analysis, both natural and antiresonance frequencies are involved. Eq. (3) can
be rewritten for the antiresonance eigenproblem as

ðKpq � laMpqÞffbg ¼ 0: ð9Þ

Differentiating Eq. (9) with respect to a structure parameter pj yields

ðKpq � la
bMpqÞ

@ffbg
@pj

þ
@Kpq

@pj

� la
b

@Mpq

@pj

�
@la

b

@pj

Mpq

� �
ffbg ¼ 0; ð10Þ

where la
b is an antiresonance eigenvalue, pj denotes a structural parameter, and the subscript pq

denotes that row p and column q have been removed from matrices M and K: Now consider a
different but related eigenproblem

ðKpq � la
bMpqÞ

TfZbg ¼ 0: ð11Þ

Since the eigenvalues of a matrix are invariant with respect to the transpose operation, the
eigenvalues from Eq. (11) will be the same as those from Eq. (9). However, the eigenvectors fZbg
will definitely differ from ffbg: Transposing Eq. (11) gives

fZbg
TðKpq � la

bMpqÞ ¼ 0: ð12Þ

The eigenvector fZbg is called the left eigenvector because it pre-multiplies ðKpq � la
bMpqÞ; whereas

the standard eigenvector post-multiplies ðKpq � la
bMpqÞ: Thus, pre-multiplying Eq. (10) by fZbg

T

and considering Eq. (12) give the antiresonance sensitivity

@la
b

@pj

¼
fZbg

Tðð@Kpq=@pjÞ � la
bð@Mpq=@pjÞÞffbg

fZbg
TMpqffbg

: ð13Þ

Notice that if Mpq and Kpq are equally symmetric matrices, then fZbg ¼ ffbg; and hence Eq. (13)
reduces to the symmetric eigenvalue sensitivity problem as in solving for the sensitivity of natural
frequencies.
Denote the parameters to be updated in a vector form as fpg and the responses used as fRg

including natural and antiresonance frequencies to a practically affordable order. The relationship
between a small perturbation of responses, dfRg; and the corresponding variation of parameters,
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dfpg; can be expressed as

dfRg ¼ Sdfpg; ð14Þ

where sensitivity matrix S consists of two types of sensitivity components, namely natural
frequency sensitivity and antiresonance sensitivity as

S ¼
1

2p

@l1
@p1

ð2o1Þ
�1 @l1

@p2
ð2o1Þ

�1 ?
@l1
@pm

ð2o1Þ
�1

^ ^ & ^
@ln

@p1
ð2onÞ

�1 @ln

@p2
ð2onÞ

�1 &
@ln

@pm

ð2onÞ
�1

@ðla
bÞ1

@p1
½2ðoa

bÞ1	
�1 @ðla

bÞ1
@p2

½2ðoa
bÞ1	

�1 @ðla
bÞ1

@pm

½2ðoa
bÞ1	

�1

^ ^ & ^

@ðla
bÞl

@p1
½2ðoa

bÞl	
�1 @ðla

bÞl
@p2

½2ðoa
bÞl	

�1 @ðla
bÞl

@pm

½2ðoa
bÞl	

�1

2
66666666666666666664

3
77777777777777777775

; ð15Þ

where ðoa
bÞi ¼

ffiffiffiffiffiffiffiffiffi
ðla

bÞi
p

is the antiresonance eigen-frequency. Inverting Eq. (14) gives the
operational formula

dfpg ¼ S�1dfRg ¼ GdfRg; ð16Þ

which gives the variation of the physical parameters as a result of a small perturbation of the
responses. Such sensitivity results can be used in judging the adequacy of a particular response
configuration. On the other hand, when the response perturbation is set to represent an
anticipated margin of errors in the measured response, the parameter variation as expressed in
Eq. (16) will indicate the errors that can be expected in the updated parameters. This error
estimation can then be used as a norm to evaluate the performance of the trained neural network.

3.3.2. Sensitivity analysis concerning damping parameters (second-level network)
The second neural network is used to update structural damping ratios using the integrals of

FRFs as reference responses. The sensitivity thus refers to the variation of damping ratios to small
perturbation of FRF integrals. Rewriting Eq. (8) in matrix form,

fzgr
1 ¼ Ar
rfagr
1; ð17Þ

where Aij ¼ 1
2
o2j�3

i ; with oi ði ¼ 1; 2y; rÞ being the circular frequencies. Thus,

fagr
1 ¼ A�1
r
rfzgr
1: ð18Þ

The individual response components, i.e., the integral of FRFs, IB; is obtained from

IB ¼
Z o2ðziÞ

o1ðziÞ
Bðo; fzg; fpgÞ do; ð19Þ
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where B denotes the dynamic stiffness matrix, Bðo; fzg; fpgÞ ¼ ðK� lMþ joCÞ�1; fzg is
the damping ratio vector, fzg ¼ ½z1; z2;y; zr	

T; and fpg is the structural parameter vector, fpg ¼
½p1; p2;y; pr	T: The integration bounds o1 and o2 are determined by a proportion (say 0.9 and
1.1, respectively) of the individual frequency oi: Since the influence of small damping on oi is
negligible, the sensitivity of IB with respect to zi can be obtained by

@IB

@zi

¼
Z o2

o1

@Bðo; fzg; fpgÞ
@zi

do: ð20Þ

In the above expression, the parameter vector fpg has known values from the output of the first
network, hence

@B

@zi

¼ �B jo
@C

@zi

� �
C; where

@C

@zi

¼ M
Xr�1
k¼0

@ak

@zi

½M�1K	k: ð21Þ

Substituting Eq. (21) into Eq. (20),

@IB

@zi

¼
Z o2

o1

�B joM
Xr�1
k¼0

@ak

@zi

½M�1K	k
 !

B do: ð22Þ

Hence, the relationship between a small variation of the damping ratios and the corresponding
variation of integrals of FRFs can be established via the sensitivity matrix Sd with entries
calculated from Eq. (22)

dfIg ¼ Sddfzg: ð23Þ

Inverting Eq. (23)

dfzg ¼ GddfIg; ð24Þ

where the gain matrix Gd ¼ S�1
d ; and the vector fIg consists of entries from matrix IB:

It has to be pointed out the fact that the structural parameters ðfpgÞ used to compute the FRFs
and thereby the integral IB for training of the second neural network are the output from the first
neural network, and these parameters contain errors in themselves already. Hence, the error
vector dfIg in Eq. (24) should consist of two parts; one due to the above carry-over error ðdfIgCÞ
which takes effect during the neural network training, and another due to the (random) errors in
the actual measured FRFs ðdfIgMÞ when subsequently apply the trained ANN for actual damping
updating. Thus,

dfIg ¼ dfIgM þ dfIgC : ð25Þ

dfIgC can be evaluated based on the parameter error vector dfpg from Network-1. From Eq. (19),

@IB

@pi

¼
Z o2ðfpgÞ

o1ðfpgÞ

@Bðo; fzg; fpgÞ
@pi

do; ð26Þ

where

@Bðo; fzg; fpgÞ
@pi

¼ �B
@½K� o2Mþ joC	

@pi

B:
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In actual application, Eq. (26) can be approximated by a finite difference solution

@IB
@pi

����
fp�g

E
DIB

Dpi

����
fp�g

¼
Z o2ðpiþDpiÞ

o1ðpiþDpiÞ
Bðpi þ DpiÞ do�

Z o2ðpiÞ

o1ðpiÞ
BðpiÞ do

� �
=Dpi; ð27Þ

where vector fp�g represents the nominal state of structure parameters at which sensitivity
analysis is conducted and Dpi denotes a small incremental quantity corresponding to a particular
structure parameter pi: Thus, Eq. (27) forms the entries of the sensitivity matrix S: Subsequently,
the errors in the FRF integrals induced by the inaccuracy in the parameters fpg can be computed
in a forward manner

dfIgC ¼ Sdfpg: ð28Þ

4. Design of neural networks and training

An ANN-based model updating scheme generally consists of the following stages: (1)
generating the training data, (2) training the neural network, (3) testing the neural network. The
trained neural network can subsequently be used to update the FE model parameters when fed
with measured response data from the actual structure.
The preparation of proper training data plays a crucial role for a successful updating since their

quality directly affects the ‘‘expressing power’’ (the generalization capacity) of the network. The
training data actually comprises a number of paired vectors (called ‘‘training pairs’’), and each pair
includes a parameter vector (network output) and the corresponding response vector (network input).
Before the generation of the training pairs, a proper response configuration must be determined. This
can be carried out using the aforementioned sensitivity analysis scheme. It has to be pointed out the
fact that the results of a sensitivity analysis are dependent upon the chosen nominal state around
which the perturbation takes place. Therefore, in cases where the intended coverage of the structure
states is wide as presumed in the present study, the sensitivity analysis concerning the response
configuration selection should be conducted on a bunch of randomly selected structural states, and the
final judgment should be made based on the collective trend from the sensitivity results.
Once the response configuration is decided, the generation of the training pairs becomes

straightforward: For n number of randomly sampled parameter vectors within the targeted
variation range, fpgj ðj ¼ 1; 2;y; nÞ; n number of response vectors, fRgj ðj ¼ 1; 2;y; nÞ; are
calculated by a forward FE analysis. Thus, n number of training pairs (or ‘‘training patterns’’) are
readily available for the training of the neural network.
The next decision is on the network topology, i.e., the number of hidden layers and the number

of neurons (processing units) in each hidden layer. Note that the number of neurons in the input
and output layers are already determined upon the selection of the response and structural
parameter configuration. Since in this study the neural network is chosen to have two hidden
layers with equal number of neurons in each hidden layer, only a desired number of neurons needs
to be decided. This can be achieved by performing a trial procedure. After the number of neurons
is determined, the Levenberg–Marquardt training algorithm is employed to train the network.
The termination of the training is decided based on the cross-validation output.
For the testing of the generalization ability during the network training, a group of data

patterns (called ‘‘test patterns’’) not included in the training patterns is utilized for the purpose to
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assess the network performance throughout the training process. A network is regarded as a good
candidate if it could result in small errors not only on the training data but also on the test data.

5. Numerical example

A numerical example is given to illustrate the implementation of the above-described procedure.
For demonstrative purpose, a simple multi-storey building frame is chosen. Assuming a pure-sway
deformation mode (rigid floor), the frame can be simplified as a lumped-mass stick FE model shown
in Fig. 3, allowing only sway d.o.f.s. All the effective masses are lumped to the nodal points at the
floor levels. The inter-storey sway stiffness of the frame at all individual storeys is considered as the
structural parameters to be updated, along with the damping ratios for the first four natural modes.

5.1. Updating of the structural parameters (first-level network)

For the purpose of better network conditioning, in the first network the stiffness variables are
represented by stiffness modification factors (SMFs) defined as the absolute FE model stiffness
normalized with respect to a reference-state stiffness (e.g., the uncracked stiffness for reinforced
concrete members), such that the range of the SMFs falls within (0,1). A SMF close to zero
represents a total-damage state, while a SMF equal to one indicates no damage. In the present
example, the target SMF variation range is set to (0.35, 1.0) to cover from the undamaged to a
heavily damaged state. For a six-storey frame considered in this example, six SMFs are subject to
updating. Table 1 lists the basic properties of the frame.

5.1.1. Selection of response configuration
Several combinations of natural frequencies and antiresonance frequencies are configured for

selection. For practicality concerns, the response components are restricted within the lowest few
modes. Table 2 lists eight such response configurations, where a higher designation number
roughly represents a higher demand on the measured data.
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As the targeted variation range of the structural states is broad (SMFs within 0.35–1.0), a total
of 20 nominal states of the structure are chosen in a random manner within the above range.
Sensitivity analysis is then conducted with respect to each of these nominal models for all the
candidate response configurations using an automated procedure. The basic routine is as follows.
For any particular nominal state defined by a set of SMFs, an FE analysis is first performed to
compute the required modal response, from which the response data for the ith response
configuration are extracted. A perturbation is imposed on the extracted response data with a
perturbation factor assumed to follow a Gaussian distribution with zero mean and 1% variance
(note that other distribution patterns, if deemed appropriate, can be applied in a similar way).
Thus, by random sampling a sufficient number (say 1000 as in this example) of the response
perturbation vectors, dfRg; are generated. Subsequently, the corresponding parameter variation
(error) vectors, dfpg; are calculated according to Eq. (16). These parameter error vectors are then
examined on a statistical basis and the MSE is used to represent the overall sensitivity of the
parameters for the particular response configuration. Besides the MSE, the detailed distribution
of the error for individual parameters can also be examined to further assess the adequacy of the
response configuration. Fig. 4 summarizes the sensitivity analysis results in the form of scatter plot
of the MSEs of the structural parameters against all the response configurations being considered.
It can be observed that four response configurations, namely fRgð5Þ; fRgð6Þ; fRgð7Þ and fRgð8Þ;

exhibit a quite stable error margin in terms of the overall MSE. Further inspection of the error
distributions of the individual SMFs, as shown in Fig. 5 for one particular nominal state, reveals
that the error band of SMFs reduces from above 710% to within 76% when fRgð7Þ is used
instead of fRgð5Þ: Slight further improvement of the results can be achieved when using fRgð8Þ;
which however includes two more response components. Therefore, the response configuration
fRgð7Þ is chosen for the subsequent preparation of the training pairs and the neural network
training.
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Table 1

Physical properties of a six-storey RC frame used in the numerical example

Storey No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

Height (m) 5 3 3 3 3 3

Column cross-section (m2) 0.6
 0.6 0.5
 0.5 0.45
 0.45 0.45
 0.45 0.35
 0.35 0.35
 0.35

Lumped mass (kg) 47,500 42,000 40,500 39,500 37,000 35,500

Initial modulus E ¼ 26GPa (for a typical class of concrete)

Table 2

Eight candidate response configurations for Network-1

Configuration no. 1 2 3 4 5 6 7 8

Number of natural frequencies 1 2 3 4 4 4 4 4

Number of antiresonance frequenciesa 5 4 3 2 4 2,2 3,3 4,4

aSingle numbers refer to antiresonance frequencies from FRF(1,1), while double numbers separated by a comma

refer to antiresonance frequencies, respectively, obtained from FRF(1,1) and FRF(2,2). FRF(i; j) denotes the frequency
response at d.o.f. i due to a unit impulse applied at d.o.f. j:
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5.1.2. Training of the neural network
After selected the response configuration, standard FE calculations can proceed to generate the

parameter-response data pairs for the network training. The required number of the training data
pairs is determined based on two factors; the dimension of the input layer (response vector) and
the value ranges of the physical parameters (the ‘‘SMFs’’ herein) within which the network is
expected to generalize. Now that the response vector has been selected as fRgð7Þ which contains 10
components, the dimension of the network input layer is thus 10. On the other hand, the variation
range of the structural parameters, i.e., SMFs, is targeted to cover 0.35–1.0. Thus, according to
Vapnik–Chervonenkis dimension theory [20], it is found that 1500 training pairs are appropriate
for the network training. The numbers of testing and cross-validation data patterns are subsequently
chosen to be 800 and 600, respectively. All these required data patterns are then generated from the
FE analysis, and they are used as ‘‘noiseless’’ data patterns for the network training.
Fig. 6(a) illustrates the network performance in terms of the overall MSE on the training and

testing data for 10 different networks with different number of neurons in their hidden layers. It
can be seen that the MSE generally decreases with increasing number of neurons in the hidden
layers (i.e., larger networks). As expected, all networks perform better on the training patterns
than on the testing patterns. In conjunction with an analysis of the percentage error distributions
of the individual SMFs from the network output for the test patterns, it is found that the neural
network with 12 neurons in each of the two hidden layers can already achieve an error band
within73% for all individual SMFs, given noiseless input data. Therefore, this network topology
is selected.
During the network training process, the development of the network performance is

continuously monitored. Fig. 6(b) depicts the progressive network performance in terms of the
MSE during the training iterations. As can be seen, the training procedure stops at epoch 35 since
there is no further improvement of the network performance on the cross-validation data patterns
in nearly 10 epochs (from epoch 25 to 35).
The above neural network training is based on the noiseless data patterns directly obtained

from the FE analysis. The so-trained neural network is designated as Network-1A. To produce a
noise-resisting neural network, a noise-injection learning strategy is implemented to repeat the
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training procedure with the same network topology setting. In this process, however, the 1500
training data patterns are treated by injecting noise (representing the measurement errors) to the
response side (network input) according to Eq. (2). The ‘‘noise’’ component, vj; is obtained by
random sampling from a prescribed probability distribution. Since only frequency data are used
here, it is assumed that the error in the measured frequency data follows a Gaussian distribution
with a zero mean and 1% variance. The output side of the training data, i.e., the SMFs, remains
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unchanged and the original pairing is also retained. The network trained using the above noise-
injected training patterns is designated as Network-1B.
To evaluate the performance of the above two networks (Network-1A and Network-1B) under

a noisy measurement data environment, four arbitrary structure states are subjected to updating
using these two networks. Table 3 lists the values of the SMFs for the four structure states. For
each state, the exact response data are first calculated using the FE analysis, and they are then
‘‘polluted’’ by adding random error to generate 1000 sets of noisy measurement responses. These
noisy response data are then fed into the two networks one by one to perform the updating. Fig. 7
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Table 3

Four model scenarios used for performance comparison between Network-1A (noiseless data trained) and Network-1B

(noise-injection trained)

Case no. SMF

Storey 1 Storey 2 Storey 3 Storey 4 Storey 5 Storey 6

1 0.734 0.867 0.762 0.699 0.786 0.767

2 0.821 0.812 0.856 0.733 0.902 0.881

3 0.781 0.947 0.780 0.718 0.798 0.948

4 0.761 0.897 0.962 0.863 0.866 0.751
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Fig. 6. Performance of neural networks with different topology settings. (a) Variation of MSE of updated parameters

with different number of hidden units. (b) Typical network performance curves with ongoing training process.
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compares the overall MSE of the output parameters from the two networks. The distributions of
the percentage error for the individual parameters (SMFs) from the two networks are compared
in Fig. 8. As can be clearly observed, Network-1B exhibits a significantly improved performance
under the simulated noisy measurement data. The maximum percentage error for the individual
parameters is reduced to within 74% as compared to 78% from Network-1A. The latter is
comparable with the prediction of the parameter errors from the sensitivity analysis.

5.2. Updating of structural damping ratios (second-level network)

In this example, four damping ratios, zi ði ¼ 1; 2;y; 4Þ; corresponding respectively to the lowest
four natural modes, are considered for updating.

5.2.1. Selection of response configuration
The responses used for the damping updating are the integrals of FRFs around the natural

frequencies (see Fig. 2(b)). For a multi-d.o.f. system, it is possible to measure a number of FRFs,
so there could be different response configurations to consider for the sake of a better network
performance. The identification of a desired configuration beforehand also helps the planning of
the test programme in real applications. For an illustrative purpose, eight candidate response
configurations, namely fIgð1Þ; fIgð2Þ;y; fIgð8Þ as shown in Table 4, are subjected to the sensitivity
analysis in a way similar to that described in Network-1. Note that in Table 4 the number in
parentheses, ði; jÞ; denotes the FRF with force (actuator) applied along the d.o.f. j and the
response (sensor) measured at the d.o.f. i: The four lowest natural modes are considered, thus with
three arbitrary FRFs each response vector will consist of 12 components (4 modes
 3 FRFs).
Each integral is obtained by integrating the FRF over a frequency interval from 0:9fk to 1:1fk;
with fk being the kth natural frequency up to the fourth mode.
A sensitivity analysis is conducted to calculate the variation of the damping parameters, dfzgðiÞ;

corresponding to a perturbation on the FRF integrals included in a particular configuration
dfIgðiÞ: As mentioned in Section 3.3.2, the perturbation on FRFs is considered to represent two
parts of errors, one is the so-called carry-over error that is associated with the errors from the first-
level neural network, dfIgðiÞC ; and the other represents the errors in the actual measured FRF
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integrals, dfIgðiÞM ; which is assumed to also follow a Gaussan noise with zero mean and 1%
variance. The overall error vector, dfIgðiÞ; is obtained as the sum of dfIgðiÞM and dfIgðiÞC :
Subsequently, the error in the damping ratios, dfzgðiÞ; can be calculated according to Eq. (24).
Fig. 9(a) depicts the overall MSE in dfzgðiÞ from the above sensitivity analysis for 20 arbitrary
chosen nominal states of the structure, for which both the SMFs and the damping ratios are
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Table 4

Eight candidate response configurations for Network-2

Configuration no. 1 2 3 4 5 6 7 8
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chosen in an arbitrary manner within their respective range. It can be seen that the 8th response
configuration exhibits the best outcome and so it is selected for the Network 2 training. The
distribution of the errors corresponding to one particular state of the structure is illustrated in
Fig. 9(b), which indicates that the maximum anticipated damping updating error is about 710%
with the assumed margin of error in the measured FRF integrals.

5.2.2. Training of the neural network
The number of training pairs for Network-2 is chosen to be 900 according to the Vapnik–

Chervonenkis dimensional analysis. The numbers of testing and cross-validation patterns are
chosen to be 600 and 500, respectively. After a trial procedure, it is found that a neural network
with 9 neurons in each of the two hidden layers is adequate.
The training data as well as the testing and cross-validation data are generated so that a

damping variation range from 0.5% to 10% is covered. The neural network, designated as
Network-2B, is then trained following the noise-injection learning strategy in a similar way as for
the previous Network-1B.
To examine the generalization and noise-resisting ability of the above trained network, an

arbitrary model with assumed parameters shown in Table 5 are subjected to updating. For 1000
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sets of error-polluted FRF integral data ðfIg8j ; j ¼ 1;y; 1000Þ; considering an Gaussian error
distribution with zero mean and 1% variance, Fig. 10 shows the error distributions in the updated
4 damping ratios as compared with the theoretically predicted error from the sensitivity analysis.
Once again, a remarkable reduction of the error margin is achieved by implementing the noise-
injection learning strategy in the neural network training. A summary of the updated damping
ratios for z1 to z4; along with the updated structural stiffness parameters using Network-1B, is
given in Table 5. Of course, it should be mentioned again that the realization of the noise resisting
capacity of a neural network in real applications is subject to the adequacy of the noise model
used in the neural network training in representing the actual noise or error in the measurement
data. Inconsistency in the noise description could otherwise contribute to erroneous updating
results.

6. Conclusions

In this paper, a comprehensive procedure is presented to use ANN for FE model updating
including both structural and damping parameters. The methodology involves a series of
sensitivity analyses for the selection of a desired response configuration as well as for the
evaluation of the post-trained network performance; it also covers the selection of the network
topology through trial training and the incorporation of a noise-injection learning strategy. A
two-level neural network FE model updating scheme is developed so that the structural
parameters (SMFs) and the damping ratios ðziÞ can be updated using two separate networks. A
numerical example is given to demonstrate the effectiveness and efficiency of the proposed
method.
The two-neural network scheme proves to work out successfully in updating the structural

parameters and the damping ratios. Apart from the satisfactory accuracy that can be achieved
with noiseless response data, the numerical example also shows that the noise-injection
learning strategy can result in a neural network with substantially enhanced noise-resisting
ability. In the example shown, the error margin in the updated structural parameters and damping
ratios from the noise-injection learning is reduced by more than 50% as compared to the
results from the noiseless-data trained neural work when fed with noisy data. For a given
level of noise with zero mean and 1% variance in the frequency response data, the neural network
is able to identify the structural parameters as well as the damping ratios within an
error of 74%.
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Table 5

An example case and corresponding updating results from the two-level networks

Stiffness parameters (SMFs) (pi) Damping ratios (zi)

p1 p2 p3 p4 p5 p6 z1 z2 z3 z4

Actual parameters 0.65 0.78 0.80 0.59 0.72 0.70 0.01 0.014 0.032 0.056

Updating results 0.65 0.772 0.813 0.578 0.714 0.689 0.0098 0.0142 0.0330 0.0545

Updating errors (%) 2.3 �1.0 1.7 �2.0 �0.8 �1.6 �2.5 1.6 3.3 �2.6
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It should be pointed out that the realization of the noise-resisting ability in real applications is
subject to the adequacy of the noise model used in the network training in describing the actual
noise in the measured data. The applicability of the updated damping ratios using the proposed
damping model also depends on the adequacy of such damping model in representing the actual
damping mechanism of the system under consideration. Should other noise models or damping
models be deemed more adequate for a particular structure, they can be implemented in the neural
network training in a similar way as described in this paper.
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